mcp-media-server
MCP Media Server is a Python-based server designed for media processing that allows integration with AI assistants to handle tasks such as video downloading and processing. It supports integration with services like Supabase and Pinecone, providing a robust solution for media-related operations.
MCP Media Server
A custom MCP (Model Context Protocol) server for media processing, built with Python. This server enables AI assistants like Claude to interact with media files, perform video processing, and integrate with Supabase and Pinecone for data storage and vector search.
Features
Core Features
- YouTube video downloading using yt-dlp
- Video processing with FFmpeg
- Supabase integration for metadata storage
- Pinecone integration for vector search
- MCP server for AI assistant integration
Advanced Features
- Progress tracking for long-running operations
- Webhook support for notifications
- Batch processing for multiple files
- Caching for improved performance
- Rate limiting for API protection
- User authentication and API key management
- Scheduled tasks for maintenance
- RESTful API gateway
- Continuous operation with Docker
- Integration with development IDEs (Roo Code & Windsurf)
Prerequisites
- Python 3.10 or higher
- FFmpeg
- Supabase account
- Pinecone account
- OpenAI API key (for embeddings)
- Docker and Docker Compose (for containerized deployment)
Installation
Option 1: Manual Setup
-
Clone the repository:
git clone https://github.com/yourusername/mcp-media-server.git cd mcp-media-server
-
Create a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
-
Configure the server by copying and editing the example environment file:
cp .env.example .env
-
Edit the
.env
file to add your API keys and configuration.
Option 2: Docker Setup
-
Clone the repository:
git clone https://github.com/yourusername/mcp-media-server.git cd mcp-media-server
-
Configure the server by copying and editing the example environment file:
cp .env.example .env
-
Edit the
.env
file to add your API keys and configuration. -
Build and start the Docker container:
docker-compose up -d
Usage
Running the MCP Server
To run the MCP server:
python main.py
The server uses stdio transport by default for direct integration with Claude Desktop or other MCP clients.
Starting with SSE Transport
To run the server with Server-Sent Events (SSE) transport:
python main.py --transport sse
Running the API Server
To run the API server alongside the MCP server:
python main.py --api
Starting Both SSE and API Server
To run both the SSE transport and API server:
python main.py --transport sse --api
Continuous Operation with Docker
For 24/7 operation in production environments:
-
Deploy using Docker Compose:
docker-compose up -d
-
Set up automatic restarts and monitoring:
# Make scripts executable chmod +x deploy.sh monitor.sh generate_api_key.sh # Deploy with health checks ./deploy.sh # Add monitoring to crontab (runs every 5 minutes) (crontab -l 2>/dev/null; echo "*/5 * * * * /path/to/mcp-media-server/monitor.sh") | crontab -
-
Set up as a system service (Linux):
# Copy service file sudo cp mcp-media-server.service /etc/systemd/system/ # Edit the service file to update the path sudo nano /etc/systemd/system/mcp-media-server.service # Enable and start the service sudo systemctl enable mcp-media-server.service sudo systemctl start mcp-media-server.service
IDE Integration (Roo Code & Windsurf)
For Windows users:
- Run the IDE integration setup script:
setup_ide_integration.bat
For Linux/macOS users:
-
Generate an API key:
./generate_api_key.sh
-
Configure your IDE using the generated key and settings from
ide-config.json
Integrating with Claude Desktop
- Open Claude Desktop app
- Navigate to Settings
- Add a new MCP server with the following configuration:
- Name: MCP Media Server
- Command: Path to your Python executable
- Arguments: Path to the main.py file
Example configuration:
{
"mcpServers": {
"mcp-media-server": {
"command": "C:\\path\\to\\venv\\Scripts\\python.exe",
"args": ["C:\\path\\to\\mcp-media-server\\main.py"]
}
}
}
API Documentation
Once the API server is running, you can access the API documentation at:
http://localhost:9000/docs
Key API Endpoints
/videos/download
- Download a video from YouTube/videos/process
- Process a video using FFmpeg/videos/search
- Search for videos on YouTube/videos/vector-search
- Semantic search for videos/videos/similar
- Find similar videos
Development
Project Structure
mcp-media-server/
├── src/
│ ├── api/ # RESTful API implementation
│ ├── auth/ # Authentication and security
│ ├── core/ # Core MCP server implementation
│ ├── config/ # Configuration settings
│ ├── db/ # Database integrations
│ ├── services/ # Background services
│ ├── tasks/ # Scheduled tasks
│ ├── tools/ # MCP tools implementation
│ ├── utils/ # Utilities and helpers
│ └── webhooks/ # Webhook handlers
├── downloads/ # Downloaded files
├── processed/ # Processed files
├── thumbnails/ # Generated thumbnails
├── cache/ # Cache files
├── logs/ # Log files
├── .env # Environment variables
├── docker-compose.yml # Docker configuration
├── Dockerfile # Docker build instructions
├── deploy.sh # Deployment script
├── monitor.sh # Health monitoring script
├── generate_api_key.sh # API key generation script
├── mcp-media-server.service # Systemd service file
├── setup_ide_integration.bat # IDE integration for Windows
├── ide-config.json # Configuration for IDE integration
├── main.py # Application entry point
└── requirements.txt # Python dependencies
Adding New Tools
To add a new tool to the MCP server, create a new function in the appropriate file in the src/tools
directory and decorate it with @mcp_server.register_tool
.
Example:
from src.core.server import mcp_server
@mcp_server.register_tool
async def my_new_tool(param1: str, param2: int) -> dict:
"""
Description of the new tool.
Args:
param1: Description of param1
param2: Description of param2
Returns:
Dict containing the result
"""
# Implement the tool functionality
result = {"status": "success", "message": "Tool executed successfully"}
return result
Container Management
View logs:
docker-compose logs -f mcp-server
Check container status:
docker ps | grep mcp-server
Monitor resource usage:
docker stats mcp-server
License
This project is licensed under the MIT License - see the LICENSE file for details.