postg-mem
PostgMem is a .NET service designed to store and manage AI memories using vector embeddings in PostgreSQL. It supports semantic search and tagging functionalities, and integrates seamlessly with the Model Context Protocol for AI applications.
PostgMem
A Model Context Protocol (MCP) server implementation that provides vector memory storage using PostgreSQL and pgvector for AI applications.
Overview
PostgMem is a .NET-based service that allows AI agents to store, retrieve, and search through memories using vector embeddings. It leverages PostgreSQL with the pgvector extension to provide efficient similarity search capabilities.
Key features:
- Store structured memories with vector embeddings
- Retrieve memories by ID
- Semantic search through memories using vector similarity
- Filter search results using tags
- MCP (Model Context Protocol) integration for easy use with AI agents
Technologies
- .NET 9.0
- PostgreSQL with pgvector extension
- Model Context Protocol (MCP)
- ASP.NET Core
- Npgsql for PostgreSQL connectivity
Prerequisites
- .NET 9.0 SDK
- PostgreSQL database with pgvector extension installed
- Text embedding API (default configuration uses Ollama)
Setup
Database Configuration
- Create a PostgreSQL database for the application
- Install the pgvector extension in your database:
CREATE EXTENSION vector;
- Create the memories table:
CREATE TABLE memories ( id UUID PRIMARY KEY, type TEXT NOT NULL, content JSONB NOT NULL, source TEXT NOT NULL, embedding VECTOR(384) NOT NULL, tags TEXT[] NOT NULL, confidence DOUBLE PRECISION NOT NULL, created_at TIMESTAMP WITH TIME ZONE NOT NULL, updated_at TIMESTAMP WITH TIME ZONE NOT NULL );
Environment Configuration
Configure the application settings in the .env
file:
ConnectionStrings__Storage="Host=localhost;Database=mcp_memory;Username=postgres;Password=postgres"
Embeddings__ApiUrl=http://localhost:11434/
Embeddings__Model=all-minilm:33m-l12-v2-fp16
ConnectionStrings__Storage
: PostgreSQL connection stringEmbeddings__ApiUrl
: URL of your embedding API (defaults to Ollama)Embeddings__Model
: The embedding model to use
Running the Application
- Navigate to the PostgMem directory
- Run the application:
dotnet run
- The MCP server will be available at
http://localhost:5000
by default
MCP Tools
The following MCP tools are available:
Store
Store a new memory in the database.
Parameters:
type
(string): The type of memory (e.g., 'conversation', 'document', etc.)content
(string): The content of the memory as a JSON objectsource
(string): The source of the memory (e.g., 'user', 'system', etc.)tags
(string[]): Optional tags to categorize the memoryconfidence
(double): Confidence score for the memory (0.0 to 1.0)
Search
Search for memories similar to the provided text.
Parameters:
query
(string): The text to search for similar memorieslimit
(int): Maximum number of results to return (default: 10)minSimilarity
(double): Minimum similarity threshold (0.0 to 1.0) (default: 0.7)filterTags
(string[]): Optional tags to filter memories
Get
Retrieve a specific memory by ID.
Parameters:
id
(Guid): The ID of the memory to retrieve
Delete
Delete a memory by ID.
Parameters:
id
(Guid): The ID of the memory to delete
Implementation Details
Memory.cs
: Defines the data model for memoriesStorage.cs
: Handles database operations for storing and retrieving memoriesEmbeddingService.cs
: Generates vector embeddings for textMemoryTools.cs
: Implements MCP tools for interacting with the memory storage
License
[Your license information here]
Contributing
[Your contribution guidelines here]