claude-pytorch-treehugger
1
The PyTorch HUD API with MCP Support is a Python library and MCP server designed to interface with the PyTorch HUD API. It enables access to CI/CD data, job logs, and analytics, offering tools for detailed analysis and resource utilization metrics. The functionality includes data access, log analysis, and integration with ClickHouse for data querying.
PyTorch HUD API with MCP Support
A Python library and MCP server for interacting with the PyTorch HUD API, providing access to CI/CD data, job logs, and analytics.
Overview
This project provides tools for PyTorch CI/CD analytics including:
- Data access for workflows, jobs, and test runs
- Efficient log analysis for large CI logs
- ClickHouse query integration for analytics
- Resource utilization metrics
Usage (for humans)
# Install from GitHub repository
pip install git+https://github.com/izaitsevfb/claude-pytorch-treehugger.git
claude mcp add hud pytorch-hud
Development
# Install dependencies (if not installing with pip)
pip install -r requirements.txt
# Start MCP server
python -m pytorch_hud
Key Features
Data Access
get_commit_summary
: Basic commit info without jobsget_job_summary
: Aggregated job status countsget_filtered_jobs
: Jobs with filtering by status/workflow/nameget_failure_details
: Failed jobs with detailed failure infoget_recent_commit_status
: Status for recent commits with job statistics
Log Analysis
download_log_to_file
: Download logs to local storageextract_log_patterns
: Find errors, warnings, etc.extract_test_results
: Parse test execution resultsfilter_log_sections
: Extract specific log sectionssearch_logs
: Search across multiple logs
Development
# Run tests
python -m unittest discover test
# Type checking
mypy -p pytorch_hud -p test
# Linting
ruff check pytorch_hud/ test/
Documentation
- : Detailed usage, code style, and implementation notes
- : General MCP protocol information
License
MIT