mcp-jina-ai
Jina AI MCP Server is designed to provide access to advanced AI-driven web services, including content extraction and fact-checking powered by Jina AI's grounding engine. It communicates using standardized JSON responses and supports various output formats for optimized compatibility with large language models.
Jina AI MCP Server
An MCP server that provides access to Jina AI's powerful web services through Claude. This server implements three main tools:
- Web page reading and content extraction
- Web search
- Fact checking/grounding
Features
Tools
read_webpage
- Extract content from web pages in a format optimized for LLMs
- Supports multiple output formats (Default, Markdown, HTML, Text, Screenshot, Pageshot)
- Options for including links and images
- Ability to generate alt text for images
- Cache control options
search_web
- Search the web using Jina AI's search API
- Configurable number of results (default: 5)
- Support for image retention and alt text generation
- Multiple return formats (markdown, text, html)
- Returns structured results with titles, descriptions, and content
fact_check
- Fact-check statements using Jina AI's grounding engine
- Provides factuality scores and supporting evidence
- Optional deep-dive mode for more thorough analysis
- Returns references with key quotes and supportive/contradictory classification
Setup
Prerequisites
You'll need a Jina AI API key to use this server. Get one for free at https://jina.ai/
Installation
There are two ways to use this server:
Installing via Smithery
To install Jina AI for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install jina-ai-mcp-server --client claude
Option 1: NPX (Recommended)
Add this configuration to your Claude Desktop config file:
{
"mcpServers": {
"jina-ai-mcp-server": {
"command": "npx",
"args": [
"-y",
"jina-ai-mcp-server"
],
"env": {
"JINA_API_KEY": "<YOUR_KEY>"
}
}
}
}
Option 2: Local Installation
- Clone the repository
- Install dependencies:
npm install
- Build the server:
npm run build
- Add this configuration to your Claude Desktop config:
{
"mcpServers": {
"jina-ai-mcp-server": {
"command": "node",
"args": [
"/path/to/jina-ai-mcp-server/dist/index.js"
],
"env": {
"JINA_API_KEY": "<YOUR_KEY>"
}
}
}
}
Config File Location
On MacOS:
~/Library/Application Support/Claude/claude_desktop_config.json
On Windows:
%APPDATA%/Claude/claude_desktop_config.json
Debugging
Since MCP servers communicate over stdio, debugging can be challenging. We recommend using the MCP Inspector:
npm run inspector
The Inspector will provide a URL to access debugging tools in your browser.
API Response Types
All tools return structured JSON responses that include:
- Status codes and metadata
- Formatted content based on the requested output type
- Usage information (token counts)
- When applicable: images, links, and additional metadata
For detailed schema information, see schemas.ts
.
Running evals
The evals package loads an mcp client that then runs the index.ts file, so there is no need to rebuild between tests. You can load environment variables by prefixing the npx command. Full documentation can be found here.
OPENAI_API_KEY=your-key npx mcp-eval evals.ts index.ts