ntealan-apis-mcp-server

ntealan-apis-mcp-server

0

The NTeALan Dictionaries MCP Server is a versatile and extendable server that facilitates management of dictionary data, articles, and user contributions through the Model Context Protocol. Designed for easy integration and high performance, this project is ideal for handling dictionary-related data operations.

NTeALan REST APIs MCP Server

NTeALan dictionaries MCP Server is a modular, extensible Model Context Protocol (MCP) server for NTeALan REST APIs dictionaries and contributions. This project provides a unified interface for managing dictionary data, articles, and user contributions, and is designed for easy integration and extension.

The project is deployed at https://apis.ntealan.net/ntealan/mcpserver. Add /sse path to connect to a MCP client. Only resource actions can be used now.

⚠️ This dev endpoint could be unavailable sometimes. Just create an issue and we will work on it.

smithery badge

PyPI MIT licensed Documentation


🦜 Table of Contents


🦜 Features

  • Dictionary Management: Create, update, delete, and retrieve dictionaries and their metadata.
  • Article Management: Manage articles within dictionaries, including statistics and filtering.
  • Contribution Management: Track and manage user contributions to articles and dictionaries.
  • Extensible MCP Server: Easily add new resources and tools.
  • Async Support: Built on top of fastmcp and aiohttp for high performance.
  • OpenAPI-like Resource Registration: Register resources and tools with URIs and tags.

🦜 Getting Started

Prerequisites

Installation

Installing via pip

Clone the repository and install dependencies:

git clone https://github.com/Levis0045/ntealan-apis-mcp-server.git
cd ntealan-apis-mcp-server
pip install .
(Optional) Install and use uv for faster dependency management

If you want faster installs and modern Python packaging, you can use uv in the ntealan-apis-mcp-server directory:

uv sync

Running the Server

To start the MCP server:

python -m ntealanmcp -t stdio

Or, if you have uv installed, you can run server command:

ntealanmcp -t stdio

The server will run using the Server-Sent Events (sse) transport by default at this endpoint http://127.0.0.1:8000/sse. You can modify the transport in main.py if needed.


🦜 Project Structure

ntealan-api/
├── src/
│   └── ntealan_apis_mcp/
│       ├── main.py
│       ├── models/
│       │   ├── article.py
│       │   ├── contribution.py
│       │   ├── dictionary.py
│       │   └── common.py
│       ├── primitives/
│       |    ├── resources/
│       │    │   ├── article.py
│       │    │   ├── contribution.py
│       │    │   └── dictionary.py
│       |    └── tools/
│       |        ├── article.py
│       |        ├── contribution.py
│       |        └── dictionary.py
│       └── common/
│           ├── utils.py
│           ├── cache.py
│           └── http_session.py
├── examples/
├── tests/
├── pyproject.toml
└── requirements.txt

🦜 Usage

Primitive resources

Resources are asynchronous functions that expose public Data from NTeALan API endpoints for dictionaries, articles, and contributions. They are registered with the MCP server and can be called via their custom URIs.

Example resource registration:

ntl_mcp_server.add_resource_fn(
    lambda dictionary_id, article_id, params: get_article_by_id(
        dictionary_id, article_id, params, ntl_mcp_server.get_context()
    ),
    name="get_article_by_id",
    uri="ntealan-apis://articles/dictionary/{dictionary_id}/{article_id}?{params}",
    tags=["article-endpoint", "mcp-resource"],
    mime_type="application/json",
    description="Get an article by ID"
)

# or just use the classic integration
@ntl_mcp_server.resource(
    uri="ntealan-apis://articles/dictionary/{dictionary_id}/{article_id}?{params}",
    tags=["article-endpoint", "mcp-resource"],
    mime_type="application/json"
)
async def get_article_by_id(
    dictionary_id: str, article_id: UUID,
    params: str, ctx: Context
) -> McpResourceResponse:
    """
    Retrieve a article by its unique identifier.
    """
    # Placeholder logic
    return {"status": "OK", "data": f"Hello, {article_id}!"}

List of existings resources and status:

Name / URI PatternDescriptionParametersDevelopment Status
ntealan-apis://dictionaries/dictionary/{dictionary_id}Get dictionary metadata by IDdictionary_idStable
ntealan-apis://dictionaries?limit=2Get all dictionaries metadatalimitStable
ntealan-apis://dictionaries/statistics/{dictionary_id}Get statistics for a specific dictionarydictionary_idStable
ntealan-apis://dictionaries/statisticsGet statistics for all dictionariesNoneStable
ntealan-apis://articles/dictionary/{dictionary_id}/{article_id}?noneGet article by IDdictionary_id, article_idStable
ntealan-apis://articles?limit=2Get all articleslimitStable
ntealan-apis://articles/dictionary/{dictionary_id}?limit=2Get all articles for a dictionarydictionary_id, limitStable
ntealan-apis://articles/statistics/{dictionary_id}Get article statistics for a dictionarydictionary_idStable
ntealan-apis://articles/statisticsGet statistics for all articlesNoneNot stable
ntealan-apis://contributions/{dictionary_id}/{contribution_id}Get contribution by IDdictionary_id, contribution_idStable
ntealan-apis://greeting/ElvisGreeting resourcenameStable
ntealan-apis://articles/dictionaries/search/{dictionary_id}?q=mba&page=1&limit=1Search articles in a dictionarydictionary_id, q, page, limitStable
ntealan-apis://articles/search?q=mba&page=1Search articlesq, pageStable
ntealan-apis://dictionaries/search?q=yemb&page=1&limit=1Search dictionariesq, page, limitStable

Primitive tools

Tools are utility functions for creating, updating, and deleting dictionaries, articles, and contributions.

Example tool registration:

ntl_mcp_server.add_tool(
    create_dictionary,
    description="Create a new dictionary",
    tags=["mcp-tool", "dictionary-endpoint"]
)

List of existings tools and status (NOT YET IMPLEMENTED):

Tool NameDescriptionRequired Payload FieldsDevelopment Status
create_dictionaryCreate a new dictionarydata (dictionary fields)Not started
update_dictionaryUpdate an existing dictionarydictionary_id, data (fields to update)Not started
delete_dictionaryDelete a dictionarydictionary_idNot started
create_articleCreate a new articledictionary_id, data (article fields)Not started
update_articleUpdate an articledictionary_id, article_id, data (fields to update)Not started
delete_articleDelete an articledictionary_id, article_idNot started
create_contributionCreate a new contributiondictionary_id, article_id, data (contribution fields)Not started
update_contributionUpdate a contributiondictionary_id, article_id, contribution_id, dataNot started
delete_contributionDelete a contributiondictionary_id, article_id, contribution_idNot started

Run examples

Check examples/ folder to run and test some samples.

# for all resources
uv run examples/run_client_resources.py -t sse -e prod -s 8
# for all tools
uv run examples/run_client_tools.py -t stdio -e local -s 0

You can get docs on :

# for all resources
uv run examples/run_client_resources.py -h
# for all tools
uv run examples/run_client_tools.py -h

Deploying with Docker

You can deploy the MCP server using Docker and serve it behind an Nginx reverse proxy for production environments.

1. Build the Docker image

Build the Docker image manually:

docker build -t ntealan-mcp-server .
2. Or automatically build and start the service
  • Get and check the latest version of compose and Docker. You will get in response Docker Compose version v2.35.1.
docker compose version
  • Build and start the service
docker compose up --build -d
  • Your MCP server will now be accessible at this address http://0.0.0.0:8000 or your configured domain.

  • Connect with MCP Client at http://127.0.0.1:8000/sse or your configured domain.

Connect with Smithery

  • Install mcp cli
uv add "mcp[cli]"
  • Connect with MCP client
import mcp
from mcp.client.websocket import websocket_client
import json
import base64

smithery_api_key = "your-api-key"
url = f"wss://server.smithery.ai/@Levis0045/ntealan-apis-mcp-server/ws?api_key={smithery_api_key}"

async def main():
    # Connect to the server using websocket client
    async with websocket_client(url) as streams:
        async with mcp.ClientSession(*streams) as session:
            # Initialize the connection
            await session.initialize()
            # List available tools
            tools_result = await session.list_tools()
            print(f"Available tools: {', '.join([t.name for t in tools_result.tools])}")

            # Example of calling a tool:
            # result = await session.call_tool("tool-name", arguments={"arg1": "value"})

if __name__ == "__main__":
    import asyncio
    asyncio.run(main())

🦜 Contributing

Get more informations in this file:

🦜 Contact