eks-mcp-server-new
The EKS Model Context Protocol (MCP) Server is designed to provide a standardized interface for GenAI agents to interact with EKS clusters. It supports comprehensive EKS and Kubernetes operations, multiple authentication methods, and is optimized for fast response times.
EKS Model Context Protocol (MCP) Server
A lightweight, efficient server that implements the Model Context Protocol for EKS operations. This server provides a standardized interface for GenAI agents to interact with EKS clusters.
Features
- Fast response times with proper timeout handling
- Comprehensive EKS operations support
- Kubernetes resource management (pods, services, deployments, etc.)
- Multiple authentication methods for EKS clusters
- Robust error handling and logging
- Docker containerization for easy deployment
- ECS deployment support
Project Structure
main.py
: Main server implementation with FastAPIeks_operations.py
: EKS API operations implementationk8s_operations.py
: Kubernetes API operations implementationk8s_operations_sdk_v4.py
: SDK-based Kubernetes operations implementationk8s_operations_kubectl.py
: Kubectl-based Kubernetes operations with proper authenticationk8s_auth_config.py
: Authentication configuration for Kubernetesdirect_k8s_client.py
: Direct Kubernetes API client implementationtest_*.py
: Various test scripts for different implementationsDockerfile
andDockerfile.amd64
: Docker configuration filesdocker-compose.yml
: Docker Compose configurationrequirements.txt
: Python dependenciesclient/
: Client implementation directory ()ecs-deployment/
: ECS deployment scripts and configuration ()
API Endpoints
GET /health
- Health check endpointGET /mcp/v1/operations
- List available operationsPOST /mcp/v1/query
- Execute MCP operations
Supported Operations
EKS Cluster Operations
list_clusters
- List EKS clusters in a regiondescribe_cluster
- Get detailed information about a clusterlist_nodegroups
- List nodegroups for a clusterdescribe_nodegroup
- Get detailed information about a nodegroup
Kubernetes Operations
list_namespaces
- List Kubernetes namespaceslist_pods
- List pods in a namespacedescribe_pod
- Get detailed information about a podget_deployments
- List deployments in a namespacedescribe_deployment
- Get detailed information about a deploymentget_services
- List services in a namespacedescribe_service
- Get detailed information about a serviceget_pod_logs
- Get logs from a pod
Authentication Methods
The server supports multiple authentication methods for EKS clusters:
- AWS SDK Authentication: Uses the AWS SDK to authenticate with EKS and get cluster information
- Kubectl with Generated Kubeconfig: Creates a temporary kubeconfig file and uses kubectl
- Direct Kubernetes API Calls: Makes direct API calls to the Kubernetes API server
The current implementation uses the Kubectl method with proper authentication, which provides the most reliable results.
Getting Started
Prerequisites
- Docker
- AWS credentials (for production use)
- Python 3.8+ (for local development)
Running Locally
# Install dependencies
pip install -r requirements.txt
# Run the server
python main.py
Running with Docker
# Build the Docker image
docker build -t eks-mcp-server .
# Run the container
docker run -d -p 8000:8000 --name mcp-server eks-mcp-server
Running with Docker Compose
# Start the server
docker-compose up -d
# Stop the server
docker-compose down
Deploying to ECS
See the for detailed instructions.
# Deploy to ECS
cd ecs-deployment
./deploy.sh
# Update existing ECS deployment
./update-service.sh
Testing
Use the included test scripts to verify the server is working correctly:
# Basic tests
python test_mcp.py
# Comprehensive operation tests
python test_mcp_operations.py
# Test namespace integration
python test_mcp_namespace.py
python test_mcp_namespace_2.py
# Test kubectl integration
python test_kubectl_operations.py
# Test SDK v3 operations
python test_v3_operations.py
# Test SDK v4 operations
python test_v4_operations.py
Client Usage
The project includes a client implementation that uses Amazon Bedrock for conversational interaction with the MCP server. See the for details.
# Run the client
cd client
python mcp_chat_client_v6.py
Example Requests
List Clusters
curl -X POST http://localhost:8000/mcp/v1/query \
-H "Content-Type: application/json" \
-H "X-API-Key: your-api-key" \
-d '{
"operation": "list_clusters",
"parameters": {
"region": "us-east-1"
}
}'
List Pods
curl -X POST http://localhost:8000/mcp/v1/query \
-H "Content-Type: application/json" \
-H "X-API-Key: your-api-key" \
-d '{
"operation": "list_pods",
"parameters": {
"cluster_name": "my-cluster",
"namespace": "default",
"region": "us-east-1"
}
}'
Architecture
The server is built with FastAPI and uses a combination of synchronous and asynchronous operations for improved performance. It includes:
- Timeout handling for AWS API calls
- Multiple authentication methods for EKS clusters
- Comprehensive logging
- Response time tracking
- Error handling with detailed error codes
EKS Authentication
For the server to authenticate with EKS clusters, the ECS task role needs to be added to the EKS cluster's aws-auth ConfigMap. See the for detailed instructions.
Current Deployment
The server is currently deployed to ECS and accessible at:
- Endpoint: http://3.90.45.69:8000
- Health check: http://3.90.45.69:8000/health
- Operations discovery: http://3.90.45.69:8000/mcp/v1/operations
Test Namespaces
The project includes test namespaces in the EKS cluster:
mcp-test-namespace
: Contains a deployment with 2 nginx podsmcp-test-namespace-2
: Contains a deployment with 3 nginx pods
License
MIT