patronus-mcp-server
Patronus MCP Server is a standardized server designed to optimize and evaluate LLM systems using the Patronus SDK. It offers features like configurable evaluators for single and batch evaluations, and the capability to run experiments with datasets.
Patronus MCP Server
An MCP server implementation for the Patronus SDK, providing a standardized interface for running powerful LLM system optimizations, evaluations, and experiments.
Features
- Initialize Patronus with API key and project settings
- Run single evaluations with configurable evaluators
- Run batch evaluations with multiple evaluators
- Run experiments with datasets
Installation
- Clone the repository:
git clone https://github.com/yourusername/patronus-mcp-server.git
cd patronus-mcp-server
- Create and activate a virtual environment:
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install main and dev dependencies:
uv pip install -e .
uv pip install -e ".[dev]"
Usage
Running the Server
The server can be run with an API key provided in two ways:
- Command line argument:
python src/patronus_mcp/server.py --api-key your_api_key_here
- Environment variable:
export PATRONUS_API_KEY=your_api_key_here
python src/patronus_mcp/server.py
Interactive Testing
The test script (tests/test_live.py
) provides an interactive way to test different evaluation endpoints. You can run it in several ways:
- With API key in command line:
python -m tests.test_live src/patronus_mcp/server.py --api-key your_api_key_here
- With API key in environment:
export PATRONUS_API_KEY=your_api_key_here
python -m tests.test_live src/patronus_mcp/server.py
- Without API key (will prompt):
python -m tests.test_live src/patronus_mcp/server.py
The test script provides three test options:
- Single evaluation test
- Batch evaluation test
Each test will display the results in a nicely formatted JSON output.
API Usage
Initialize
from patronus_mcp.server import mcp, Request, InitRequest
request = Request(data=InitRequest(
project_name="MyProject",
api_key="your-api-key",
app="my-app"
))
response = await mcp.call_tool("initialize", {"request": request.model_dump()})
Single Evaluation
from patronus_mcp.server import Request, EvaluationRequest, RemoteEvaluatorConfig
request = Request(data=EvaluationRequest(
evaluator=RemoteEvaluatorConfig(
name="lynx",
criteria="patronus:hallucination",
explain_strategy="always"
),
task_input="What is the capital of France?",
task_output="Paris is the capital of France."
task_context=["The capital of France is Paris."],
))
response = await mcp.call_tool("evaluate", {"request": request.model_dump()})
Batch Evaluation
from patronus_mcp.server import Request, BatchEvaluationRequest, RemoteEvaluatorConfig
request = Request(data=BatchEvaluationRequest(
evaluators=[
AsyncRemoteEvaluatorConfig(
name="lynx",
criteria="patronus:hallucination",
explain_strategy="always"
),
AsyncRemoteEvaluatorConfig(
name="judge",
criteria="patronus:is-concise",
explain_strategy="always"
)
],
task_input="What is the capital of France?",
task_output="Paris is the capital of France."
task_context=["The capital of France is Paris."],
))
response = await mcp.call_tool("batch_evaluate", {"request": request.model_dump()})
Run Experiment
from patronus_mcp import Request, ExperimentRequest, RemoteEvaluatorConfig, CustomEvaluatorConfig
# Create a custom evaluator function
@evaluator()
def exact_match(expected: str, actual: str, case_sensitive: bool = False) -> bool:
if not case_sensitive:
return expected.lower() == actual.lower()
return expected == actual
# Create a custom adapter class
class ExactMatchAdapter(FuncEvaluatorAdapter):
def __init__(self, case_sensitive: bool = False):
super().__init__(exact_match)
self.case_sensitive = case_sensitive
def transform(self, row, task_result, parent, **kwargs):
args = []
evaluator_kwargs = {
"expected": row.gold_answer,
"actual": task_result.output if task_result else "",
"case_sensitive": self.case_sensitive
}
return args, evaluator_kwargs
# Create experiment request
request = Request(data=ExperimentRequest(
project_name="my_project",
experiment_name="my_experiment",
dataset=[{
"input": "What is 2+2?",
"output": "4",
"gold_answer": "4"
}],
evaluators=[
# Remote evaluator
RemoteEvaluatorConfig(
name="judge",
criteria="patronus:is-concise"
),
# Custom evaluator
CustomEvaluatorConfig(
adapter_class="my_module.ExactMatchAdapter",
adapter_kwargs={"case_sensitive": False}
)
]
))
# Run the experiment
response = await mcp.call_tool("run_experiment", {"request": request.model_dump()})
response_data = json.loads(response[0].text)
# The experiment runs asynchronously, so results will be pending initially
assert response_data["status"] == "success"
assert "results" in response_data
assert isinstance(response_data["results"], str) # Results will be a string (pending)
List Evaluator Info
Get a comprehensive view of all available evaluators and their associated criteria:
# No request body needed
response = await mcp.call_tool("list_evaluator_info", {})
# Response structure:
{
"status": "success",
"result": {
"evaluator_family_name": {
"evaluator": {
# evaluator configuration and metadata
},
"criteria": [
# list of available criteria for this evaluator
]
}
}
}
This endpoint combines information about evaluators and their associated criteria into a single, organized response. The results are grouped by evaluator family, with each family containing its evaluator configuration and a list of available criteria.
Create Criteria
Creates a new evaluator criteria in the Patronus API.
{
"request": {
"data": {
"name": "my-criteria",
"evaluator_family": "Judge",
"config": {
"pass_criteria": "The MODEL_OUTPUT should contain all the details needed from RETRIEVED CONTEXT to answer USER INPUT.",
"active_learning_enabled": false,
"active_learning_negative_samples": null,
"active_learning_positive_samples": null
}
}
}
}
Parameters:
name
(str): Unique name for the criteriaevaluator_family
(str): Family of the evaluator (e.g., "Judge", "Answer Relevance")config
(dict): Configuration for the criteriapass_criteria
(str): The criteria that must be met for a passactive_learning_enabled
(bool, optional): Whether active learning is enabledactive_learning_negative_samples
(int, optional): Number of negative samples for active learningactive_learning_positive_samples
(int, optional): Number of positive samples for active learning
Returns:
{
"status": "success",
"result": {
"name": "my-criteria",
"evaluator_family": "Judge",
"config": {
"pass_criteria": "The MODEL_OUTPUT should contain all the details needed from RETRIEVED CONTEXT to answer USER INPUT.",
"active_learning_enabled": False,
"active_learning_negative_samples": null,
"active_learning_positive_samples": null
}
}
}
Custom Evaluate
Evaluates a task output using a custom evaluator function decorated with @evaluator
.
{
"request": {
"data": {
"task_input": "What is the capital of France?",
"task_context": ["The capital of France is Paris."],
"task_output": "Paris is the capital of France.",
"evaluator_function": "is_concise",
"evaluator_args": {
"threshold": 0.7
}
}
}
}
Parameters:
task_input
(str): The input prompttask_context
(List[str], optional): Context information for the evaluationtask_output
(str): The output to evaluateevaluator_function
(str): Name of the evaluator function to use (must be decorated with@evaluator
)evaluator_args
(Dict[str, Any], optional): Additional arguments for the evaluator function
The evaluator function can return:
bool
: Simple pass/fail resultint
orfloat
: Numeric score (pass threshold is 0.7)str
: Text outputEvaluationResult
: Full evaluation result with score, pass status, explanation, etc.
Returns:
{
"status": "success",
"result": {
"score": 0.8,
"pass_": true,
"text_output": "Good match",
"explanation": "Output matches context well",
"metadata": {
"context_length": 1
},
"tags": ["high_score"]
}
}
Example evaluator function:
from patronus import evaluator, EvaluationResult
@evaluator
def is_concise(output: str) -> bool:
"""Simple evaluator that checks if the output is concise"""
return len(output.split()) < 10
@evaluator
def has_score(output: str, context: List[str]) -> EvaluationResult:
"""Evaluator that returns a score based on context"""
return EvaluationResult(
score=0.8,
pass_=True,
text_output="Good match",
explanation="Output matches context well",
metadata={"context_length": len(context)},
tags=["high_score"]
)
Development
Project Structure
patronus-mcp-server/
├── src/
│ └── patronus_mcp/
│ ├── __init__.py
│ └── server.py
├── tests/
│ └── test_server.py
└── test_live.py
├── pyproject.toml
└── README.md
Adding New Features
-
Define new request models in
server.py
:class NewFeatureRequest(BaseModel): # Define your request fields here field1: str field2: Optional[int] = None
-
Implement new tool functions with the
@mcp.tool()
decorator:@mcp.tool() def new_feature(request: Request[NewFeatureRequest]): # Implement your feature logic here return {"status": "success", "result": ...}
-
Add corresponding tests:
- Add API tests in
test_server.py
:def test_new_feature(): request = Request(data=NewFeatureRequest( field1="test", field2=123 )) response = mcp.call_tool("new_feature", {"request": request.model_dump()}) assert response["status"] == "success"
- Add interactive test in
test_live.py
:async def test_new_feature(self): request = Request(data=NewFeatureRequest( field1="test", field2=123 )) result = await self.session.call_tool("new_feature", {"request": request.model_dump()}) await self._handle_response(result, "New feature test")
- Add the new test to the test selection menu in
main()
- Add API tests in
-
Update the README with:
- New feature description in the Features section
- API usage example in the API Usage section
- Any new configuration options or requirements
Running Tests
The test script uses the Model Context Protocol (MCP) client to communicate with the server. It supports:
- Interactive test selection
- JSON response formatting
- Proper resource cleanup
- Multiple API key input methods
You can also run the standard test suite:
pytest tests/
Running the Server
python -m src.patronus_mcp.server
License
This project is licensed under the Apache License 2.0 - see the file for details.
Contributing
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request