opensearch-mcp-server

opensearch-mcp-server

1

The OpenSearch MCP Server is a minimal server built for OpenSearch that uses the Model Context Protocol to provide tools for listing indices, retrieving index mappings, searching indices, and getting shard information. It supports basic and IAM role authentication methods and can be integrated with systems like LangChain and Claude Desktop.

NOTICE: This project has been graduated and moved to the opensearch-mcp-server-py repository. See you there! This repository is now archived.

OpenSearch MCP Server

A minimal Model Context Protocol (MCP) server for OpenSearch exposing 4 tools over stdio and sse server.

Available tools

  • ListIndexTool: Lists all indices in OpenSearch.
  • IndexMappingTool: Retrieves index mapping and setting information for an index in OpenSearch.
  • SearchIndexTool: Searches an index using a query written in query domain-specific language (DSL) in OpenSearch.
  • GetShardsTool: Gets information about shards in OpenSearch.

More tools coming soon.

User Guide

Installation

Install from PyPI:

pip install test-opensearch-mcp

Configuration

Authentication Methods:
  • Basic Authentication
export OPENSEARCH_URL="<your_opensearch_domain_url>"
export OPENSEARCH_USERNAME="<your_opensearch_domain_username>"
export OPENSEARCH_PASSWORD="<your_opensearch_domain_password>"
  • IAM Role Authentication
export OPENSEARCH_URL="<your_opensearch_domain_url>"
export AWS_REGION="<your_aws_region>"
export AWS_ACCESS_KEY="<your_aws_access_key>"
export AWS_SECRET_ACCESS_KEY="<your_aws_secret_access_key>"
export AWS_SESSION_TOKEN="<your_aws_session_token>"

Running the Server

# Stdio Server
python -m mcp_server_opensearch

# SSE Server
python -m mcp_server_opensearch --transport sse

Claude Desktop Integration

{
    "mcpServers": {
        "opensearch-mcp-server": {
            "command": "uvx",
            "args": [
                "test-opensearch-mcp"
            ],
            "env": {
                // Required
                "OPENSEARCH_URL": "<your_opensearch_domain_url>",

                // For Basic Authentication
                "OPENSEARCH_USERNAME": "<your_opensearch_domain_username>",
                "OPENSEARCH_PASSWORD": "<your_opensearch_domain_password>",

                // For IAM Role Authentication
                "AWS_REGION": "<your_aws_region>",
                "AWS_ACCESS_KEY": "<your_aws_access_key>",
                "AWS_SECRET_ACCESS_KEY": "<your_aws_secret_access_key>",
                "AWS_SESSION_TOKEN": "<your_aws_session_token>"
            }
        }
    }
}
  • Using the Installed Package (via pip):
{
    "mcpServers": {
        "opensearch-mcp-server": {
            "command": "python",  // Or full path to python with PyPI package installed
            "args": [
                "-m",
                "mcp_server_opensearch"
            ],
            "env": {
                // Required
                "OPENSEARCH_URL": "<your_opensearch_domain_url>",

                // For Basic Authentication
                "OPENSEARCH_USERNAME": "<your_opensearch_domain_username>",
                "OPENSEARCH_PASSWORD": "<your_opensearch_domain_password>",

                // For IAM Role Authentication
                "AWS_REGION": "<your_aws_region>",
                "AWS_ACCESS_KEY": "<your_aws_access_key>",
                "AWS_SECRET_ACCESS_KEY": "<your_aws_secret_access_key>",
                "AWS_SESSION_TOKEN": "<your_aws_session_token>"
            }
        }
    }
}

LangChain Integration

The OpenSearch MCP server can be easily integrated with LangChain using the SSE server transport

Prerequisites
  1. Install required packages
pip install langchain langchain-mcp-adapters langchain-openai
  1. Set up OpenAI API key
export OPENAI_API_KEY="<your-openai-key>"
  1. Ensure OpenSearch MCP server is running in SSE mode
python -m mcp_server_opensearch --transport sse
Example Integration Script
import asyncio
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_openai import ChatOpenAI
from langchain.agents import AgentType, initialize_agent

# Initialize LLM (can use any LangChain-compatible LLM)
model = ChatOpenAI(model="gpt-4o")

async def main():
    # Connect to MCP server and create agent
    async with MultiServerMCPClient({
        "opensearch-mcp-server": {
            "transport": "sse",
            "url": "http://localhost:9900/sse",  # SSE server endpoint
            "headers": {
                "Authorization": "Bearer secret-token",
            }
        }
    }) as client:
        tools = client.get_tools()
        agent = initialize_agent(
            tools=tools,
            llm=model,
            agent=AgentType.OPENAI_FUNCTIONS,
            verbose=True,  # Enables detailed output of the agent's thought process
        )

        # Example query
        await agent.ainvoke({"input": "List all indices"})

if __name__ == "__main__":
    asyncio.run(main())

Notes:

  • The script is compatible with any LLM that integrates with LangChain and supports tool calling
  • Make sure the OpenSearch MCP server is running before executing the script
  • Configure authentication and environment variables as needed

Development

Interested in contributing? Check out our:

  • - Setup your development environment
  • - Learn how to contribute